Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Braz. j. med. biol. res ; 46(1): 39-51, 11/jan. 2013. tab, graf
Article in English | LILACS | ID: lil-665801

ABSTRACT

Imatinib mesylate (IM) is used to treat chronic myeloid leukemia (CML) because it selectively inhibits tyrosine kinase, which is a hallmark of CML oncogenesis. Recent studies have shown that IM inhibits the growth of several non-malignant hematopoietic and fibroblast cells from bone marrow (BM). The aim of the present study was to evaluate the effects of IM on stromal and hematopoietic progenitor cells, specifically in the colony-forming units of granulocyte/macrophage (CFU-GM), using BM cultures from 108 1.5- to 2-month-old healthy Swiss mice. The results showed that low concentrations of IM (1.25 µM) reduced the growth of CFU-GM in clonogenic assays. In culture assays with stromal cells, fibroblast proliferation and α-SMA expression by immunocytochemistry analysis were also reduced in a concentration-dependent manner, with a survival rate of approximately 50% with a dose of 2.5 µM. Cell viability and morphology were analyzed using MTT and staining with acrydine orange/ethidium bromide. Most cells were found to be viable after treatment with 5 µM IM, although there was gradual growth inhibition of fibroblastic cells while the number of round cells (macrophage-like cells) increased. At higher concentrations (15 µM), the majority of cells were apoptotic and cell growth ceased completely. Oil red staining revealed the presence of adipocytes only in untreated cells (control). Cell cycle analysis of stromal cells by flow cytometry showed a blockade at the G0/G1 phases in groups treated with 5-15 µM. These results suggest that IM differentially inhibits the survival of different types of BM cells since toxic effects were achieved.


Subject(s)
Animals , Male , Mice , Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Hematopoietic Stem Cells/drug effects , Mesenchymal Stem Cells/drug effects , Piperazines/pharmacology , Pyrimidines/pharmacology , Cell Proliferation , Cell Survival , Cells, Cultured , Colony-Forming Units Assay , Fibroblasts , Hematopoietic Stem Cells/cytology , Immunohistochemistry , Mesenchymal Stem Cells/cytology
2.
Braz. j. med. biol. res ; 33(8): 889-95, Aug. 2000. tab, ilus
Article in English | LILACS | ID: lil-265845

ABSTRACT

The objective of the present study was to determine the effect of protein malnutrition on the glycoprotein content of bone marrow extracellular matrix (ECM). Two-month-old male Swiss mice were submitted to protein malnutrition with a low-protein diet containing 4 percent casein as compared to 20 percent casein in the control diet. When the experimental group had attained a 20 percent loss of their original body weight, we extracted the ECM proteins from bone marrow with PBS buffer, and analyzed ECM samples by SDS-PAGE (7.5 percent) and ECL Western blotting. Quantitative differences were observed between control and experimental groups. Bone marrow ECM from undernourished mice had greater amounts of extractable fibronectin (1.6-fold increase) and laminin (4.8-fold increase) when compared to the control group. These results suggest an association between fluctuations in the composition of the hematopoietic microenvironment and altered hematopoiesis observed in undernourished mice


Subject(s)
Animals , Male , Mice , Bone Marrow Cells/chemistry , Extracellular Matrix/chemistry , Fibronectins/metabolism , Laminin/metabolism , Protein-Energy Malnutrition/metabolism , Blotting, Western , Case-Control Studies , Electrophoresis, Polyacrylamide Gel , Fibronectins/analysis , Glycoproteins/analysis , Hematopoiesis, Extramedullary/physiology , Laminin/analysis
3.
Braz. j. med. biol. res ; 31(10): 1281-4, Oct. 1998. tab, ilus
Article in English | LILACS | ID: lil-223989

ABSTRACT

Thyroid hormone (T3) is essential to normal brain development. Previously, we have shown that T3 induces cerebellar astrocyte proliferation. This effect is accompanied by alteration in glial fibrillary acidic protein (GFAP) and fibronectin organization. In the present study, we report that the C6 glioma cell line, which expresses GFAP and is classified as an undifferentiated astrocytic cell type, is a target for T3 action. The C6 monolayers were treated with 50 nM T3 for 3 days, after which the cells were maintained for 2 days without medium changes. In C6 cells, T3 induced the expression of proteins of 107, 73 and 62 kDa. The hormone also up-regulated protein bands of 100 (+50 per cent), 37 (+50 per cent) and 25.5 kDa (+50 per cent) and down-regulated proteins of 94 (-100 per cent), 86.5 (-100 per cent), 68 (-100 per cent), 60 (-100 per cent), 54 (-33 per cent), 51 (-33 per cent) and 43.5 kDa (-33 per cent). We suggest, on the basis of molecular mass, that the 54-, 51- and 43.5-kDa proteins could be the cytoskeletal proteins vimentin, GFAP and actin, respectively. The down-regulation of these proteins may be involved in the effects of thyroid hormone on C6 differentiation.


Subject(s)
Humans , Animals , Astrocytes , Glial Fibrillary Acidic Protein , Glioma , Triiodothyronine/physiology
4.
Braz. j. med. biol. res ; 29(9): 1239-42, Sept. 1996. tab
Article in English | LILACS | ID: lil-186131

ABSTRACT

Leukemia represents the clonal expansion of an individual cell lineage of the hematopoietic system at a specific point of its maturation and development. This dysregulated expansion of cells in often accompanied by altered adherence to the bone marrow microenvironment and abnormalities in endogenous cytokine production by neoplastic cells. Proteoglycans (PGs) synthesized by neoplastic cells may interact with extracellular matrix (ECM) molecules and/or locally produced cytokines. It is believed that these events may be mediated by the glycosaminoglycan (GAG) moiety of PGs such as heparan or chondroitin sulfate, and depends on its charge. The strength of GAG-cytokine binding may be determined by the extent to sulfation of the GAG chains. The synthesis, metabolism and biological role of PGs in hematopoietic malignancies have not been clearly defined. In order to study how alterations of GAGs in leukemic cells may alter cellular behavior, we treated the murine myeloid leukemic cell line WeHi-3B with sodium chlorate. This drug reduces the sulfation of GAGs, since chlorate is a potent inhibitor of sulfate adenylyltransferase. The undersulfated GAGs produced by WeHi-3B cells were not efficient in controlling the mitotic rat of the cells, since a decrease in cell proliferation was observed in vitro. These data suggest that the complexes formed by GAGs with ECM components and/or cytokines may have an important role in the induction of leukemic cell proliferation. It is possible that the stimulatory activity elicited by this binding may be dependent upon the organization of these complexes.


Subject(s)
Humans , Cell Line/chemistry , Glycosaminoglycans/chemistry , In Vitro Techniques , Leukemia, Experimental , Proteoglycans/chemistry , Extracellular Matrix/chemistry
5.
Braz. j. med. biol. res ; 27(9): 2143-52, Sept. 1994. ilus
Article in English | LILACS | ID: lil-144466

ABSTRACT

1. Connective tissue cells isolated form hepatic granulomas (GR cells), induced in mouse liver tissue by schistosomal infection, are able to sustain myelopoiesis, while other connective tissue cells such as skin fibroblasts (SF) are not. 2. We compared the ability of SF and GR cells sustain in vitro proliferation of the FDC-P1 myeloid cell line, dependent upon IL-3 or GM-CSF. 3. Only the GR stroma susteined the proliferation of co-cultured FDC-P1 cells. RT-PCR analysis showed that both cell lines expressed the message for GM-CSF, but not for IL-3. We showed that GM-CSF was produced by, and remained bound to the cell layer through heparan sulfate; this growth factor could be released by high-salt treatment in a biologically active form from both cell types. The same activity could be restored to NaCl-treated GR cells, but not to SF, by incubation with recombinant murine GM-CSF. 4. These results indicate that the ability of connective tissue cells to sustain myelopoiesis depends directly upon the capapcity of their heparan sulfate-bearing molecules to bind and present the GM-CSF to the target cells in a biologically active form. Alternatively, a yet unidentified set of cell layer-associated molecules may be required for the positive or negative control of the membrane-bound GM-CSF


Subject(s)
Mice , Animals , Connective Tissue/metabolism , Granuloma/metabolism , Hematopoiesis , Liver Diseases, Parasitic/metabolism , Schistosomiasis mansoni/metabolism , Connective Tissue/pathology , Culture Techniques , Fibroblasts/metabolism , Fibroblasts/pathology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Granuloma/pathology , Heparitin Sulfate/metabolism , Liver Diseases, Parasitic/pathology , Interleukin-3/metabolism , Proteoglycans/metabolism , Schistosomiasis mansoni/pathology
SELECTION OF CITATIONS
SEARCH DETAIL